Journal für praktische Chemie Chemiker-Zeitung
 © Johann Ambrosius Barth 1996

Originalbeiträge • Full Papers

On the Reaction of Nitrilium Salts with Tropones

R. Abu-El-Halawa

Nablus (Palestine), Al-Najah University, Department of Chemistry, and Al-Mafraq (Jordan), Al El-Bayt University,

W. Wirschun, A. H. Moustafa, and J. C. Jochims
Konstanz, Fakultät für Chemie der Universität

Received December 5th, 1995 respectively March 18th, 1996

Abstract

Tropone $\mathbf{2 a}$ and tropolone methyl ether $\mathbf{2 b}$ react with nitrilium salts ($\mathbf{1 a - j}$) to give the bicyclic oxazolium salts $\mathbf{3}, 5$. Cleavage of the $\mathrm{N}-\mathrm{C} 3$ a bond of $\mathbf{3}, 5$ followed by y Chapman rearrangement afford the stable N-acyliminium salts

4, 8. A crystal structure analysis for $\mathbf{3 a}$ is reported. AM1 calculations are in accord with the proposed mechanisms for the formation of $\mathbf{3}, 5$ and 4,8 .

Recently, Luk'yanov et al. [1-4] and we [5-10] reported reactions of nitrilium salts 1 with carbonyl compounds (Scheme 1). Thus, with tertiary carboxamides N-acylamidinium salts were obtained [5, 6]. Mixtures of up to four different N-acylamidinium salts are formed by reactions of nitrilium salts with secondary amides [7, 8]. Aromatic aldehydes afford high yields of N -acyliminium salts $[2,9]$, while α, β-unsaturated carbonyl compounds give either 4 H - or $6 \mathrm{H}-1,3$-oxadiazinium salts, or N -acyl-1-azonia-1,3-butadiene salts [4, 10]. A review of the reactions of nitrilium salts with carbonyl compounds has been published by Luk' yanov [1], cp. Scheme 1.

Here we report that, differently from reactions with other α, β-unsaturated carbonyl compounds, nitrilium salts 1 react with tropones 2 to the bicyclic salts 3 . Thus, the yellow crystalline product 3 a (85%) was formed on stirring a mixture of tropone 2a and the N -methylacetonitrilium salt 1a at low temperatures (-70 to $23^{\circ} \mathrm{C}$) in dichloromethane. Compounds 3b-g were prepared correspondingly.

The constitution of 3a was.proved by an X-ray structural analysis, see Fig. 1, Table 1. Note the planar fivemembered ring and the twisted double bonds of the seven-membered ring.

In the ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ of compounds 3 the broad signal around 4.8 ppm is assigned to H 3 a .

Scheme 1 Reported Reactions of Nitrilium Salts with Carbonyl Compounds (counterions omitted)

Fig. 1 SCHAKAL Plot of the Cation 3a

Table 1 Selected Bond Lengths (pm), Bond Angles (deg), and Torsional Angles (deg) of the Cation 3a [11]

Atoms	X-ray	AM1	Atoms	X-ray	AM1
O1-C1	$132.1(3)$	136.6	C6-C7-O1	$122.2(3)$	120.6
C1-N1	$129.3(3)$	134.1	C7-C8-C2	$109.6(2)$	111.4
C1-C9	$147.6(4)$	148.0	C7-O1-C1	$107.4(2)$	108.2
N1-C8	$147.3(3)$	149.2	O1-C1-N1-C8	$-0.6(3)$	0.8
N1-C10	$145.5(3)$	143.6	O1-C1-N1-C10	$173.9(3)$	179.5
C8-C2	$150.6(4)$	149.2	O1-C7-C8-C2	$118.9(2)$	126.2
C2-C3	$134.6(4)$	134.2	O1-C7-C6-C5	$-174.5(3)$	-176.4
C3-C4	$145.5(6)$	144.4	O1-C7-C8-N1	$0.3(2)$	2.4
C4-C5	$133.0(6)$	134.8	C1-N1-C8-C7	$0.2(3)$	1.7
C5-C6	$144.0(5)$	144.2	C1-N1-C8-C2	$-116.1(3)$	-122.7
C6-C7	$133.2(4)$	133.9	C1-O1-C7-C6	$178.8(3)$	176.3
C7-O1	$141.0(3)$	143.4	C1-O1-C7-C8	$-0.6(3)$	-2.1
C7-C8	$149.2(4)$	151.3	N1-C8-C2-C3	$169.4(3)$	166.0
O1-C1-N1	$113.8(2)$	112.3	N1-C8-C7-C6	$-179.1(3)$	-175.4
O1-C1-C9	$119.2(3)$	117.2	N1-C1-O1-C7	$0.8(3)$	0.9
C9-C1-N1	$127.0(3)$	130.5	C8-N1-C1-C9	$178.5(3)$	178.9
C1-N1-C8	$110.6(2)$	110.3	C8-C2-C3-C4	$-6.7(5)$	-3.2
C1-N1-C10	$127.1(2)$	127.3	C8-C7-C6-C5	$4.8(5)$	1.3
C10-N1-C8	$122.0(2)$	122.4	C2-C3-C4-C5	$-32.3(6)$	-32.1
N1-C8-C2	$112.7(2)$	115.8	C2-C8-N1-C10	$69.0(3)$	58.5
N1-C8-C7	$100.0(2)$	101.4	C2-C8-C7-C6	$-60.4(4)$	-51.8
C8-C7-O1	$108.2(2)$	107.7	C3-C4-C5-C6	$2.4(6)$	2.3
C8-C2-C3	$120.1(3)$	123.1	C3-C2-C8-C7	$59.0(4)$	51.7
C2-C3-C4	$127.4(3)$	128.3	C4-C5-C6-C7	$29.4(5)$	28.6
C3-C4-C5	$127.2(3)$	127.6	C7-C8-N1-C10	$-174.7(2)$	-179.2
C4-C5-C6	$126.2(3)$	125.8	C7-O1-C1-C9	$-178.4(3)$	-179.4
C5-C6-C7	$121.6(3)$	122.1	C9-C1-N1-C10	$-7.0(5)$	-0.1
C6-C7-C8	$129.6(3)$	131.6			

An unresolved allylic coupling to H 8 causes line broadening. A coupling of about 3 Hz is observed to a doublet of doublets around 5.4 ppm assigned to H 4 . This proton is further coupled to H 5 with about 10 Hz . The signal at 5.4 ppm could alternatively arise from H 8 . Our
assignment to H 4 is based on the net atomic charges (C4: charge $-0.20 \mathrm{e}^{-}, \mathrm{C} 8:-0.02$) calculated by the AM1 method [12, 13]. The ${ }^{13} \mathrm{C}$ NMR resonance of C 3 a appears at $62-66 \mathrm{ppm}$.

3aH-Cycloheptoxadiazolium salts 3 seem to be not reported in the literature. However, a few hexahydro$3 \mathrm{a} H$-cycloheptoxadiazoles have been prepared [14, 15], and a patent covers the synthesis of 2-aryloxazolotropylium salts [16].

In solution the salts $\mathbf{3}$ undergo rearrangement to the N -acyliminium salts 4 . Thus, reaction of 1 g with tropone at room temperature for twenty minutes afforded the bicyclus $\mathbf{3 g}(85 \%)$. When a solution of this compound was stirred at room temperature for twelve hours the rearranged salt 4 g was isolated (90%). Similarly, at low temperatures compounds $\mathbf{3 h}, \mathbf{j}$ could be observed in the ${ }^{1} \mathrm{H}$ NMR spectra. At room temperature rearrangement occurred to the iminium salts $4 \mathbf{h}, \mathbf{j}$. For $\mathrm{R}^{1}, \mathrm{R}^{2}=$ phenyl the ring opening of $\mathbf{3}$ is especially fast. N-Acylamidinium salts are known to be moisture sensitive compounds, which usually cannot be isolated [$9,17,18]$. However, compounds 4 are well crystallizing stable salts.

The structural assignments are based on the NMR spectra. At 263 K the ${ }^{1} \mathrm{H}$ NMR spectrum ($\mathrm{CD}_{3} \mathrm{CN}$) of 4 j showed five doublets for the isopropyl methyl groups, while at 351 K a sharp doublet for one isopropyl group and one broad signal for the two other isopropyl groups were observed. At 263 K six methyl signals and seven resonances for the ring carbons were found in the ${ }^{13} \mathrm{C}$ NMR spectrum, while at 351 K one sharp and one very broad CH_{3} signal and only four signals for the ring carbon atoms were observed. This is indicative for hindered rotation around the $\mathrm{C}=\mathrm{N}$ double bond in $\mathbf{4 j}$.

For the transformation $3 \rightarrow 4$ either cleavage of the $\mathrm{C} 8 \mathrm{a}-\mathrm{O}$ or the $\mathrm{C} 3 \mathrm{a}-\mathrm{N}$ bond of 3 can be envisaged. It was found that the reaction of the tropolone methyl ether 2b with 1a affords the temperature sensitive compound 5 , which on warming rearranges to 8 . The constitution of 8 requires cleavage of the $\mathrm{C} 3 \mathrm{a}-\mathrm{N}$ bond of 5 to give 6 which undergoes a Chapman type rearrangement [19] via 7 to 8 . Most likely, compounds 3 rearrange correspondingly.

In the ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{CN}, 263 \mathrm{~K}\right)$ of 5 the OCH_{3} signal appears at unusual high field (2.85 ppm). No signal for an $\mathrm{sp}^{3}-\mathrm{CH}$ proton was found between 4 and 6 ppm . A sharp doublet at 5.99 ppm is assigned to H 4 . In the gated decoupled ${ }^{13} \mathrm{C}$ NMR spectrum the resonance at 94.8 ppm assigned to C 3 a shows no ${ }^{1} J_{\mathrm{CH}}$ coupling. The constitution of 8 follows from the 600 MHz ${ }^{1} \mathrm{H}$ NMR spectrum of the vinylic protons, which consists of three well separated triplets and two doublets with coupling constants of 10 to 11 Hz . No signal for a saturated ring carbon atom was found in the ${ }^{13} \mathrm{C}$ NMR spectrum.

For stereoelectronic reasons [20-23] the transformation of \mathbf{K} to the cation (Z) -9 with trans methyl groups is slightly kinetically favoured over the transformation to $(E)-9$. From 9 either compound $\mathbf{3 a}$ is formed or - a little slower - the intermediate 10 , which opens the fourmembered ring with a low activation enthalpy to give the stable end product (E)-4a with cis methyl groups (torsional angle $\mathrm{H}_{3} \mathrm{C}-\mathrm{C}-\mathrm{N}-\mathrm{CH}_{3}: 9^{\circ}$). For the rotation around the $\mathrm{OC}-\mathrm{N}$ bond of $(E)-4$ a no transition structure could be located. The formation of $\mathbf{3 a}$ and 4 a from nitrilium salts $\mathbf{1 a}$ and tropone is exothermic. Cleavage of the $\mathrm{C} 8 \mathrm{a}-\mathrm{O}$ bond in $\mathbf{3 a}$ was calculated to be at least $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$ less favourable than cleavage of the $\mathrm{C} 3 \mathrm{a}-$ N bond.

The mechanism outlined in Scheme 2 implies a reversible cleavage of the $\mathrm{C} 3 \mathrm{a}-\mathrm{N}$ bond suggesting that the cycloaddition of $\mathbf{1}$ to $\mathbf{2}$ is a non concerted process starting with an attack of the nitrilium salt 1 on the carbonyl oxygen atom of $\mathbf{2 b}$ [cf. 7]. In agreement with this proposal are AM1 calculations for the cycloaddition of 1a to 2 a (Figure 2). According to these calculations the first enthalpy minimum is a complex K of $1 \mathbf{1 a}$ and $\mathbf{2 a}$.

Fig. 2 AM1 calculations for the reaction of 1a with tropone; enthalpies of formation relative to the sum of $\mathrm{H}($ cation $\mathbf{1 a})=798 \mathrm{~kJ}$ mol^{-1} and $\mathrm{H}(2 \mathrm{a})=59 \mathrm{~kJ} \mathrm{~mol}^{-1}$

This work was supported by the Deutscher Akademischer Austauschdienst, by the Konrad-Adenauer-Stiftung (R. Abu-El-Halawa) and by the Fonds der Chemischen Industrie. We would like to thank Prof. Dr. G. Müller and Dipl. Chem. M. Winkler for their help with the X-ray structural analysis, and Mr. S. Herzberger for technical assistance.

Experimental

All solvents were dried by standard methods. The experiments were carried out with exclusion of moisture. The melting points are uncorrected. Satisfactory microanalyses were obtained: $\mathrm{C} \pm 0.20 \%, \mathrm{H} \pm 0.22 \%, \mathrm{~N} \pm 0.31 \% .-{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR: Bruker AC250 and WM-250 spectrometers; $\mathrm{CD}_{3} \mathrm{CN}$; internal standard TMS; δ in ppm. - IR spectra: Perkin-Elmer FTIR 1600 spectrometer; $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{cm}^{-1}$. - X-ray structural analysis: EnrafNonius CAD4 diffractometer (graphite monochromator, $\lambda_{\mathrm{Mo}-\mathrm{K} \alpha}=71.069 \mathrm{pm}$).
b : broad; d: doublet; dd: doublet of doublets; dt : doublet of triplets; sept: septet; m: multiplet; sh: shoulder.

2,3-Dimethyl-3aH-cycloheptoxazol-3-ium Hexachloroantimonate (3a)

A solution of $2 \mathrm{a}[23,24](1.06 \mathrm{~g} 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added dropwise at $-78{ }^{\circ} \mathrm{C}$ to a suspension of 1a [25] ($3.91 \mathrm{~g}, 10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. After stirring at $-78^{\circ} \mathrm{C}$ for 20 min and at $0-10^{\circ} \mathrm{C}$ for 2 h the product was precipitated at $-20^{\circ} \mathrm{C}$ by slow addition of $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{ml})$ to afford a yellow powder ($4.07 \mathrm{~g}, 82 \%$). Crystallization at $-15^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave yellow prisms; m.p. $135-137^{\circ} \mathrm{C}$ (dec). - IR: 1694,1659 , 1607. - ${ }^{1} \mathrm{H}$ NMR (295 K): 2.59, $3.53\left(\mathrm{CH}_{3}\right), 4.74$ (b, H3a), 5.32 (dd, $J=10.1$ and 2.7 , coupl. to $4.74, \mathrm{H} 4$), $6.37-6.73$ (m, $4 \mathrm{H}) .{ }^{13} \mathrm{CNMR}(295 \mathrm{~K}$; gated decoupling): 14.2 ($\mathrm{q}, J=133.9$), $34.1(\mathrm{q}, J=145.7)\left(\mathrm{CH}_{3}\right), 64.6(\mathrm{~d}, J=163, \mathrm{C} 3 \mathrm{a}), 104.7$ (dd, $J=165.4$ and 11.8, C4?), 113.4 (d, $J=169.3$), 126.9 (dd, $J=165.4$ and 7.9), 127.3 (dd, $J=161.5$ and 9.8) (C5,7,8?), 131.1 (dt, $J=162.4$ and 9.8,C6), 141.3 (C-8a), 176.9(C2). $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Cl}_{6} \mathrm{NOSb}$ (496.7).
Monoclinic space group $\mathrm{P} 2_{1} / \mathrm{c} ; a=791.5(4) \mathrm{pm}, b=1387.7(2)$ $\mathrm{pm}, c=1562.9(6) \mathrm{pm} ; \beta=95.39(2)^{\circ}$; volume $1709(1) \cdot 10^{6}$ $\mathrm{pm}^{3} ; Z=4 ; T=153(2) \mathrm{K} ; 5898$ independent reflections; 5341 observed reflections ($\mathrm{I}>2 \sigma(\mathrm{I})$); solution by the Patterson method; full-matrix least-squares refinement; positions of three hydrogen atoms of the methyl groups calculated; the other hydrogen atoms were located by difference fourier synthesis; $\mathrm{R}=3.65 \%(\mathrm{I}>2 \sigma(\mathrm{I})) ; \mathrm{wR}=9.54 \%[11]$.

3-Isopropyl-2-methyl-3aH-cycloheptoxazol-3-ium Hexachloroantimonate (3b)

From 1b [26] ($4.19 \mathrm{~g}, 10 \mathrm{mmol}$) as described for 3a. Washing the product with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (7 ml) afforded a yellow-orange powder ($3.99 \mathrm{~g}, 76 \%$); m.p. $121-124^{\circ} \mathrm{C}$ (dec.). - IR: 1680 , $1625,1605(\mathrm{sh}) .{ }^{1} \mathrm{H}$ NMR (263 K): 1.46 (d, J=6.7), 1.60 (d, $J=7.0$), $2.65\left(\mathrm{CH}_{3}\right), 4.56$ (sept, $\left.J=6.7, \mathrm{CH}\right), 4.76(\mathrm{~b}, \mathrm{H}-3 \mathrm{a})$, 5.35 (dd, $J=10.4$ and 2.7, H4), 6.35-6.76 (m,4H). ${ }^{13} \mathrm{C}$ NMR (263 K): 14.7, 19.8, 21.4 (CH_{3}), $53.8(\mathrm{CH}), 61.6(\mathrm{C} 3 \mathrm{a}), 103.7$, $113.3,126.4,126.9,130.9,141.0$ (C8a), 176.7(C2). $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{6} \mathrm{NOSb}$ (524.8).

2-Ethyl-3-isopropyl-3aH-cycloheptoxazol-3-ium Hexachloroantimonate ($\mathbf{3 c}$)

From 1c [27] ($4.33 \mathrm{~g}, 10 \mathrm{mmol}$) as described for $\mathbf{3 b}$. Yield: $4.74 \mathrm{~g}(88 \%)$ of a yellow powder; m.p. $93-95^{\circ} \mathrm{C}$ (dec.). The compound decomposed in boiling MeCN. - IR: 1680, 1620, 1600. - ${ }^{1} \mathrm{H}$ NMR (263 K): 1.33 (t, $J=7.3$), 1.44 ($\mathrm{d}, J=7.0$), $1.58(\mathrm{~d}, J=6.7)\left(\mathrm{CH}_{3}\right), 2.98\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 4.54(\mathrm{sept}, J=6.8, \mathrm{CH})$, 4.76 (b, H-3a), 5.35 (dd, $J=10.1$ and $3.0, \mathrm{H} 4$), $6.35-6.76$ (m, $4 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR (263 K): 8.3, 19.8, 21.6, 22.1, $53.4\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{CH}_{2}, \mathrm{CH}\right), 61.8(\mathrm{C} 3 \mathrm{a}), 103.7,113.5,126.3,127.0,130.9,141.3$ (C8a), 179.3 (C2). $-\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{Cl}_{6} \mathrm{NOSb}$ (538.8).

2-Benzyl-3-isopropyl-3aH-cycloheptoxazol-3-ium Hexachloroantimonate (3d)

From 1d [5] ($4.95 \mathrm{~g}, 10 \mathrm{mmol}$) as described for 3a. Yield: $5.05 \mathrm{~g}(84 \%)$ of an orange powder; m.p. $116-118^{\circ} \mathrm{C}$ (dec.). IR: 1680, 1620, 1590. - ${ }^{1} \mathrm{H}$ NMR (263 K): 1.46 (d, $J=6.7$), $1.64(\mathrm{~d}, J=6.7)\left(\mathrm{CH}_{3}\right), 4.31(\mathrm{~d}, J=17.7), 4.42(\mathrm{~d}, J=17.7)$ $\left(\mathrm{CH}_{2}\right), 4.73$ (sept, $\left.J=6.7, \mathrm{CH}\right), 4.79$ (b, H3a), 5.39 (dd, $J=9.8$ and $2.8, \mathrm{H} 4), 6.30-6.75(\mathrm{~m}, 4 \mathrm{H}), 7.45\left(\mathrm{~m}\right.$, phenyl). $-{ }^{13} \mathrm{CNMR}$ $(263 \mathrm{~K}): 19.8,21.6,33.9,53.8\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}\right), 62.0(\mathrm{C} 3 \mathrm{a})$, $103.9,113.5,126.3,126.9,129.5,129.8,130.0,131.1$, 141.2(C8a), 176.6(C-2). $-\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{6} \mathrm{NOSb}$ (600.8).

2,3-Diisopropyl-3aH-cycloheptoxazol-3-ium Hexachloroantimonate (3e)

From 1e [26] ($4.47 \mathrm{~g}, 10 \mathrm{mmol}$) as described for 3a. Yield after reprecipitation at $-50^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(120$ $\mathrm{ml}): 4.86 \mathrm{~g}(88 \%)$ of a yellow powder; m.p. $150-153^{\circ} \mathrm{C}$ (dec.). The compound rearranged at $23^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ within 14 d to 4e. - IR: 1680, 1620, 1595. - ${ }^{1} \mathrm{H}$ NMR (263 K): 1.39 (d, $J=6.7), 1.40(\mathrm{~d}, J=7.0), 1.47(\mathrm{~d}, J=6.8), 1.61(\mathrm{~d}, J=6.7)\left(\mathrm{CH}_{3}\right)$, 3.39 (sept, $J=6.9$), 4.63 (sept, $J=6.7$) (CH), 4.78 (b, H3a), $5.38(\mathrm{dd}, J=10.1$ and $3.0, \mathrm{H} 4), 6.34-6.76(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (263 K): 18.6, 19.0, 20.2, 22.1, 28.2, $53.6\left(\mathrm{CH}_{3}, \mathrm{CH}\right), 62.1$ (C3a), 103.7, 113.7, 126.2, 127.0, 130.9, 141.3 (C8a), 181.4 (C2). $-\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{Cl}_{6} \mathrm{NOSb}$ (552.8).

3-Methyl-2-phenyl-3aH-cycloheptoxazol-3-ium Hexachloroantimonate (3f)

From 1f [25] ($4.53 \mathrm{~g}, 10 \mathrm{mmol}$) as described for 3a. After stirring at $-78^{\circ} \mathrm{C}$ for 20 min and at $23^{\circ} \mathrm{C}$ for 1 h the product crystallized at $0^{\circ} \mathrm{C}$. Washing at $0^{\circ} \mathrm{C}$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ afforded a yellow powder ($5.14 \mathrm{~g}, 92 \%$); m.p. $130-135^{\circ} \mathrm{C}$ (dec.). - IR: 1680, 1625, $1600 .{ }^{1}{ }^{1} \mathrm{H}$ NMR (263 K): $3.76\left(\mathrm{CH}_{3}\right)$, 4.96 (b, H3a), 5.48 (dd, $J=10.1$ and $3.0, \mathrm{H} 4$), $6.44-6.77$ (m, $4 \mathrm{H}), 7.78(m-\mathrm{H}), 7.95(p-\mathrm{H}), 8.03(o-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR (263 K): $36.1\left(\mathrm{CH}_{3}\right), 66.4(\mathrm{C} 3 \mathrm{a}), 104.6,113.8,120.1,126.9,127.0$, 130.6, 130.9, 131.8, 137.6, 141.0(C8), 171.3(C2). $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{Cl}_{6} \mathrm{NOSb}$ (558.8).

3-Isopropyl-2-phenyl-3aH-cycloheptoxazol-3-ium Hexachloroantimonate $(\mathbf{3 g})$

From 1 g [28] ($4.81 \mathrm{~g}, 10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. After stirring at $-78^{\circ} \mathrm{C}$ for 20 min and at $23^{\circ} \mathrm{C}$ for 1 h the product was precipitated at $-50^{\circ} \mathrm{C}$ by slow addition of $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{ml})$. Washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (7 ml) afforded a yellow-orange powder
(4.99 g, 85\%); m.p. $135-140^{\circ} \mathrm{C}$ (dec.). - IR: 1680,1615 (sh), $1585,1570(\mathrm{sh}) .-{ }^{1} \mathrm{H}$ NMR (263 K): 1.39 (d, $J=6.7$), 1.79 (d, $J=7.0)\left(\mathrm{CH}_{3}\right), 4.81(\mathrm{sept}, J=6.8, \mathrm{CH}), 4.96(\mathrm{~b}, \mathrm{H} 3 \mathrm{a}), 5.49(\mathrm{dd}$, $J=10.3$, coupl. to $6.43, J=3.1$, coupl. to $4.96, \mathrm{H} 4), 6.43$ (m, coupl. to $5.49, \mathrm{H} 7), 6.56(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.82(\mathrm{~m}, 2 \mathrm{H}), 7.78$ $(m-\mathrm{H}), 7.98(o, p-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR $(263 \mathrm{~K}): 20.4,22.0\left(\mathrm{CH}_{3}\right)$, $55.4(\mathrm{CH}), 62.0(\mathrm{C} 3 \mathrm{a}), 104.0,113.9,120.6,126.3,127.2$, $130.7,131.1,131.6,137.3,141.0$ (C8a), 172.5(C2). $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{6} \mathrm{NOSb}(586.8)$.

Benzoylcycloheptatrienylideneisopropylammonium Hexachloroantimonate ($\mathbf{4 g}$)

A solution of $\mathbf{3 g}(5.87 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ was stirred at $23{ }^{\circ} \mathrm{C}$ for 12 h . Evaporation of the solvent and precipitation of the residue at $-50^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(180 \mathrm{ml}) /$ $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{ml})$ afforded a yellow-orange powder $(5.28 \mathrm{~g}, 90 \%)$; m.p. 133-136 ${ }^{\circ} \mathrm{C}$. $-\mathrm{IR}: 1720,1620,1590 .-{ }^{1} \mathrm{H} \operatorname{NMR}(300$ K): $1.49\left(\mathrm{~d}, J=6.7, \mathrm{CH}_{3}\right), 4.90(\mathrm{sept}, J=6.7, \mathrm{CH}), 7.54-8.23$ $(\mathrm{m}, 11 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR $(300 \mathrm{~K}): 20.6\left(\mathrm{CH}_{3}\right), 54.6(\mathrm{CH}), 130.7$, $131.7,132.0,136.1,135.9,144.8,148.1,165.5,172.4$ (C=O, $\mathrm{C}=\mathrm{N}$). $-\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{6} \mathrm{NOSb}$ (586.8).

Acetylcycloheptatrienylideneanilinium Hexachloroantimonate (4h)

A solution of $2 \mathbf{2 a}(1.06 \mathrm{~g} 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added dropwise at $23^{\circ} \mathrm{C}$ to a suspension of 1 h [29] (4.53 g, 10 mmol). The clear yellow solution was boiled under reflux for 1 h . Cooling to $23^{\circ} \mathrm{C}$ and slow addition of $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{ml})$ afforded a pale green-yellow powder $(4.58 \mathrm{~g}, 82 \%)$ which was reprecipitated at $-15^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(80 \mathrm{ml})$ to give a yellow powder ($4.53 \mathrm{~g}, 81 \%$); m.p. $157-159^{\circ} \mathrm{C}$. - IR: 1732, 1612. - ${ }^{1} \mathrm{H}$ NMR $(295 \mathrm{~K}): 2.16\left(\mathrm{CH}_{3}\right), 7.53-7.76(\mathrm{~m}$, phenyl), 8.64-8.83 (m, 6 H$).-{ }^{13} \mathrm{C}$ NMR (295 K): $26.1\left(\mathrm{CH}_{3}\right)$, $129.8,131.5,132.4,140.5,142.0,145.9,150.5,151.4,166.9$, 173.6. $-\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{Cl}_{6} \mathrm{NOSb}$ (558.7).

When the reaction was carried out as decribed for 3a the NMR spectra of the crude product showed mixtures of $\mathbf{3 h}$ and $\mathbf{4 h}$.

Benzoylcycloheptatrienylideneanilinium Hexachloroantimonate (4i)
From 1 il [29] ($5.15 \mathrm{~g}, 10 \mathrm{mmol}$) as described for $\mathbf{4 h}$. Yield: 5.09 g (82%) of a yellow powder which was analytically pure without reprecipitation; m.p. $175-180^{\circ} \mathrm{C}$ (dec). - IR: 1720 (sh), 1704, 1583. - ${ }^{1} \mathrm{H}$ NMR (295 K): $7.37-7.75$ (m, 10H), $8.60(6 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR (295 K): 129.4, 129.8, 131.0, 131.2, 132.1, 133.4, 134.4, 141.2, 145.5, 150.2, 151.4, 168.8, 172.7. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{6} \mathrm{NOSb}$ (620.8).

(Diisopropylcarbamoyl)cycloheptatrienylidene(isopropyl) ammonium Hexachloroantimonate (4j)

From 1j [30] ($5.04 \mathrm{~g}, 10 \mathrm{mmol}$) as described for 3a. Yield after reprecipitation at $-20^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(240$ $\mathrm{ml}): 3.96 \mathrm{~g}(65 \%)$ of a yellow leaflets; m.p. $157-160^{\circ} \mathrm{C}$ (dec.). - IR: 1700, 1630. - ${ }^{1}$ H NMR (263 K): 1.08 (d, $J=6.4$), 1.25 (d, $J=6.4$), 1.46 (d, $J=6.4$), 1.47 (d, $J=6.7,6 \mathrm{H}), 1.59(\mathrm{~d}, J=6.7)$ $\left(\mathrm{CH}_{3}\right), 3.75$ (sept, $J=6.7$), 3.93 (sept, $J=6.4$), 4.59 (sept, $J=6.7)(\mathrm{CH}), 7.53(\mathrm{~m}, 1 \mathrm{H}), 7.88-8.20(\mathrm{~m}, 5 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR (263 K): 19.5, 19.6, 19.7, 20.5, 21.2, $21.5\left(\mathrm{CH}_{3}\right), 48.3,52.4$,
$53.8(\mathrm{CH}), 132.0,133.0,142.6,143.1,147.1,147.8,150.1$, 164.0. $-\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{OSb}$ (609.9).

2,3-Dimethyl-3a-methoxycycloheptoxazol-3-ium Hexachloroantimonate (5)

From 2b [31,32] and $\mathbf{1 a}(3.91 \mathrm{~g}, 10 \mathrm{mmol})$ as described for 3a. Precipitation at $0^{\circ} \mathrm{C}$ with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ afforded a temperature sensitive pale yellow powder ($4.64 \mathrm{~g}, 88 \%$); m.p. $166-168{ }^{\circ} \mathrm{C}$ (dec). - IR(nujol): $1645 .{ }^{1}{ }^{1} \mathrm{H}$ NMR (263 K): $2.74,2.84,3.55\left(\mathrm{CH}_{3}\right), 5.99$ (d, $\left.J=10.5, \mathrm{H} 8\right), 6.82-7.02(\mathrm{~m}$, $3 \mathrm{H}), 7.19(\mathrm{~d}, J=7.2,1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (263 K ;gated decoupling): 14.8 (q, $J=135), 30.6(J=145), 50.7(J=145)\left(\mathrm{CH}_{3}\right)$, 94.8 (b, C3a), 111.4 (dd, $J=166.4$ and 11.8,C4?), 116.2 (dd, $J=169.3$ and 7.9), 125.2 (dd, $J=163.4$ and 7.9), 129.5 (dd, $J=160.5$ and 10.8) ($\mathrm{C} 5,7,8), 131.5(\mathrm{dt}, J=162.4$ and 9.8, C6), 139.6 (C8a), 175.8 (b,C2). $-\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Cl}_{6} \mathrm{NO}_{2} \mathrm{Sb}(526.7)$.

Acetyl(2-methoxycycloheptatrienylidene)methylammonium Hexachloroantimonate (8)

A solution of $5(5.27 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{ml})$ was stirred at $23{ }^{\circ} \mathrm{C}$ for 12 h . Slow addition of $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{ml})$ afforded a yellow powder ($3.85 \mathrm{~g}, 73 \%$); m.p. $165-167^{\circ} \mathrm{C}$ (dec). IR(nujol): 1609. - ${ }^{1} \mathrm{H}$ NMR ($323 \mathrm{~K} ; 250$ and 600 MHz): 1.96 , $3.26,3.32\left(\mathrm{CH}_{3}\right), 7.59(\mathrm{~d}, J=11.1), 7.69(\mathrm{t}, J=9.9), 7.74(\mathrm{~d}$, $J=9.9), 7.95(\mathrm{t}, J=10.2), 8.20(\mathrm{t}, J=10.1)(\mathrm{CH}) .-{ }^{13} \mathrm{C}$ NMR (323 K): 24.4, 30.2, $51.6\left(\mathrm{CH}_{3}\right), 122.1,122.7,123.3,135.5$, $144.4,148.5,157.0,163.5(\mathrm{C}=) .-\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Cl}_{6} \mathrm{NO}_{2} \mathrm{Sb}(526.7)$.

References

[1] S. M. Luk'yanov, The chemistry of enamines, Z. Rappoport (Ed.), John Wiley \& Sons 1994, p. 1441
[2] S. M. Luk'yanov, S.V. Borodaev, V. I. Rusakov, O. V. Zubkova, A. P. Knyazev, Zh. Org. Khim. 28 (1992) 2569
[3] S. M. Luk'yanov, M. E. Kletskii, S. V. Borodaev, N. V. Shibaeva, A. I. Pyshchev, R. M. Minyaev, Mendeleev Commun. 1991, 73
[4] S. V. Borodaev, O. V. Zukova, N. V. Shibaeva, A. I. Pyshchev, S. M. Luk'yanov, Khim. Geterotsikl. Soedin. 1991, 568
[5] J. C. Jochims, R. Abu-El-Halawa, Synthesis 1990, 488
[6] J. C. Jochims, M. O. Glocker, Chem. Ber. 123 (1990) 1537
[7] M. G. Hitzler, M. Lutz, P. B. Shrestha-Dawadi, J. C. Jochims, Liebigs Ann. 1996, 247
[8] P. B. Shrestha-Dawadi, M. G. Hitzler, M. Lutz, J. C. Jochims, J. Prakt. Chem. 338 (1996) 460
[9] J. C. Jochims, M. O.Glocker, J. Hofmann, H. Fischer, Tetrahedron 47(1991) 205
[10] J. C. Jochims, R. Abu-El-Halawa, M. O. Glocker, L. Zsolnai, G. Huttner, Synthesis 1990, 763
[11] Further details of the crystal structure determination can be obtained from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldsha-fen, Germany, on quoting the dispository number CSD59281, the names of the authors, and the Journal citation.
[12] M. J. S. Dewar, C. Jie, J. Yu, Tetrahedron 49 (1993) 5003
[13] MOPAC program, version 6.0, J. J. Stewart, QCPE \# 455. The calculations were carried out with complete optimization of all bond lengths, bond angles, and dihedral angles.
[14] J. W. Huffman, J. E. Engle, J. Org. Chem. 24 (1959) 1844
[15] J. Sicher. M. Svoboda, Chem. Listy 52 (1958) 1560; Chem. Abstr. 53 (1959) 1187c
[16] Sankyo, Neth.Appl. 6,600,777; Chem. Abstr. 66 (1967) 18707h
[17] W. N. Speckamp, H. Hiemstra, Tetrahedron 41 (1985) 4367
[18] K. Th. Wanner, I. Praschak, U. Nagel, Arch.Pharm. 323 (1990) 335
[19] J. W.Schulenberg, S. Archer, Org. React. 14 (1965) 1
[20] A. F. Hegarty, Acc. Chem. Res. 13 (1980) 448
[21] A. F. Hegarty, M. T. Mc Cormack, G. Ferguson, P. J. Roberts, J. Am. Chem. Soc. 99 (1977) 2015
[22] J. E. Johnson, S. C. Cornell, J . Org.Chem. 45 (1980) 4144
[23] P. Radlick, J. Org. Chem. 29 (1964) 960
[24] I. M. Takakis, W. C. Agosta, J. Org. Chem. 43 (1978) 1952
[25] P. Bade-Shrestha-Dawadi, J. C. Jochims, Synthesis 1993, 426
[26] J. C. Jochims, R. Abu-El-Halawa, I. Jibril, G. Huttner, Chem.Ber. 117 (1984) 1900
[27] R. Abu-El-Halawa, J. C. Jochims, Synthesis 1992, 871
[28] H. Meerwein, P. Laasch, R. Mersch, J. Spille, Chem. Ber. 89 (1956) 209
[29] J. C. Jochims, S. Hehl, S. Herzberger, Synthesis 1990, 1128
[30] R. Abu-El-Halawa, J. C. Jochims, Chem.Ber. 116 (1983) 1834
[31] R. A. Minns, Org.Synth. Coll. Vol. V, 1037
[32] D. H. Evans, R. B. Greenwald, Org. Prep. Proced. Int. 4 (1972) 75

Address for correspondence:
Prof. Dr. J. C. Jochims
Universität Konstanz, Fakultät für Chemie
Postfach 5560-M 733
D-78434 Konstanz, Germany

